
Chapter 1

Circuit Simulation

1.1 Historical Perspective

Circuit simulators, as we know them today, first began to appear in
the late 1960’s and early 70’s. However, it was the explosive growth of
the integrated circuit market in the 1970’s that precipitated the rise
of importance of circuit simulation. With integrated circuits, proto-
types were expensive to build and difficult to troubleshoot. Circuit
simulators were necessary to evaluate designs before they were fab-
ricated. As designs became larger and more complicated, the need
to use circuit simulators increased.

Two groups contributed significantly to the development of the mod-
ern circuit simulator. The Astap group at IBM developed many of
the numerical method’s used. And the Spice group at the Univer-
sity of California at Berkeley developed and propagated the de facto
standard simulator.

The simulation effort at Berkeley started as a class project of Prof.
Ron Rohrer. That modest beginning resulted in a flurry of simulation
programs being developed and culminated in the release of Spice in
1972 and then Spice2 in 1975. Spice was written by Larry Nagel,
then under the guidance of Prof. Don Pederson. Spice became very
important for three reasons. First, Spice was designed to be used to
simulate integrated circuits. Unlike the simulators that preceded it,
Spice had all the models one needed to simulate integrated circuits
built into it. As such, it was easier to use than earlier simulators.

1

kundert
Text Box
Excerpted from "The Designer's Guide to SPICE and Spectre" by Kundert .For more information, go to www.designers-guide.org/Books.



2 Chapter 1. Circuit Simulation

Second, the source code for Spice was made available to anyone
who wanted it at a nominal cost. And third, Berkeley graduates
took Spice with them as they went to work at electronics companies
throughout the country.

In the late 70’s and early 80’s, most versions of Spice were propri-
etary and only used in-house by the integrated circuit manufacturers.
At the time, it seemed as if every large electronics company in the
country had developed their own version of Spice. This occurred
because circuit simulation was vital to IC manufactures and at least
initially, there were few commercial simulators available that were
suitable for IC design. Also, the IC manufacturers viewed having a
good version of Spice as a strategic advantage that allowed them to
get designs to market quickly and reliably.

This situation began to change in the late 80’s and early 90’s as
the commercial simulators began to surpass the internally developed
simulators in terms of capabilities and performance. When this hap-
pened, the strategic value of an internally developed simulator dis-
appeared. Commercial simulators starting replacing internal simu-
lators, starting with the smaller companies and working up. Today,
only the largest companies are still developing their own proprietary
simulators.

In the late 80’s, Berkeley upgraded Spice by releasing Spice3, which
had a new architecture that made it considerably easier to add new
component models and was written in C. While Spice3 was architec-
turally a big step forward from Spice2, algorithmically it was largely
the same.

At the same time, Berkeley also released a new type of circuit simu-
lator called Spectre. Spectre used harmonic balance to directly com-
pute the steady-state solution of nonlinear circuits in the frequency
domain. It was targeted for use on microwave circuits. Spectre was
picked up by Hewlett-Packard, where it became known as their Mi-
crowave Nonlinear Simulator, or MNS, and by Cadence, where the
harmonic balance algorithms were replaced by transient analysis al-
gorithms.

Cadence took a slightly different approach with Spectre than is typ-



1.2. Algorithmic Perspective 3

ical. Rather than trying to increase the speed of the simulator by
loosening the tolerances or employing faster, but less reliable, timing
analysis algorithms, Cadence instead took a conservative approach.
It started with the standard Spice algorithms, discarded those that
reduced reliability, such as bypass, and implemented each one from
scratch with the goal of improving speed, as well as accuracy and
reliability. By exploiting the 15 years of evolutionary improvements
in simulation algorithms that had occurred since Spice was written,
Cadence was able to make Spectre 3-5 times faster than traditional
versions of Spice, while improving its accuracy and reliability.

It was during the process of developing Spectre than many of the
issues that are discussed in this book were first encountered and
explored. It is because Spectre was designed to address these issues
that it plays a central part in this book. However, the book does
not focus exclusively on Spectre. It discusses issues applicable to all
simulators and so is useful for anyone that uses a circuit simulator.

A more comprehensive history of circuit simulation in general, and
Spice in particular, is available from Pederson [pederson84] and in
Vladimirescu’s The SPICE Book [vladimirescu94].

1.2 Algorithmic Perspective

The algorithms used in Spice now define the traditional approach to
circuit simulation. This approach is referred to as the direct method
for simulating a circuit. With direct methods, the nonlinear ordinary
differential equations that describe the circuit are first formulated
and then converted to a system of difference equations by a multi-
step integration method such as the trapezoidal rule. The nonlinear
difference equations are solved using the Newton-Raphson algorithm,
which generates a sequence of linear equations that are solved using
sparse Gaussian elimination. Direct methods have proven to be the
most reliable and general methods available.

In the late 70’s and early 80’s, attempts were made by several groups
to develop alternate approaches that would provide better perfor-
mance on the large digital circuits of the day. Two basic methods
were explored, explicit integration methods and relaxation methods.



4 Chapter 1. Circuit Simulation

Using explicit integration methods, such as forward Euler, eliminates
the need to actually solve the large system of differential equations
that describe the circuit. Instead, the solution at a particular time
step is extrapolated from the previous time point. It is assumed that
there are no floating capacitors and there is at least one capacitor
connecting every node in the circuit to ground. The extrapolation
is performed by evaluating the circuit equations (not solving them)
to determine the current into the grounded capacitors. The slope of
the voltage waveforms are then computed directly from

v̇(t) = C−1i(t). (1.1)

Explicit integration methods are very fast, especially if the grounded
capacitors are linear and so are easily invertible. However, they have
not gained wide acceptance because they are unstable and so generate
results that blow-up if the circuit contains time constants that are
shorter than the time step being used. This is a serious problem
that makes explicit methods unstable on most circuits. Digital MOS
circuits tend to have time constants that are all about the same size,
so explicit methods can sometimes be used with great success.

Relaxation methods exploit latency in the circuit by breaking it into
smaller pieces and solving each piece independently. If the signals
in one or more pieces are latent, then it is not necessary to solve
for them. The waveform relaxation methods take this idea one step
further. Circuits are still partitioned into subcircuits, but the subcir-
cuits are solved independently over an interval of time rather than for
a single time point. This allows the simulator to exploit multi-rate
behavior as well as latency. Multi-rate behavior is where the signals
in subcircuits are changing, but where the signals in one are chang-
ing much more slowly than in another. In this case, the simulator is
free to choose larger time steps in the subcircuit whose signals are
changing slowly.

The drawback to relaxation methods is that because the entire cir-
cuit is not evaluated at once, it is sometimes necessary to make as-
sumptions about signals before they have been computed, and if the
assumptions turn out to be incorrect, the subcircuits that depend on
those signals have to be reevaluated. Consider the circuit shown in
Figure 1.1 and assume N1 is evaluated before N2. Further assume




